
Open Source License
Compliance with Yocto
Project

About Me
● Involved in Yocto Project since 2013

● Work across the whole embedded stack

● Principal Engineer @ Konsulko Group

● Email: pbarker@konsulko.com

● Website: https://www.konsulko.com/

mailto:pbarker@konsulko.com
https://www.konsulko.com/

Disclaimer
● This is not legal advice

● Best practices are given based on my experience as a
developer and an open source community member

● If in doubt, consult an appropriate lawyer

About This Talk
● Introduction

● License Compliance in Yocto Project

● Language Package Managers
○ Case study on Rust and Cargo

● SPDX document generation, Scancode and Fossology

● Future Work

● Will take questions on Slack after this talk

Previous Talk
● License Compliance in Embedded Linux with the Yocto Project,

ELCE 2019
○ Covers best practices & Yocto Project license compliance tools in

more detail
○ Doesn’t cover some of the newer content in this talk

● Video: https://www.youtube.com/watch?v=9wRn-9KhiEI

● Slides:
https://elinux.org/images/2/20/License_Compliance_in_Embedded
_Linux_with_the_Yocto_Project.pdf

https://www.youtube.com/watch?v=9wRn-9KhiEI
https://elinux.org/images/2/20/License_Compliance_in_Embedded_Linux_with_the_Yocto_Project.pdf
https://elinux.org/images/2/20/License_Compliance_in_Embedded_Linux_with_the_Yocto_Project.pdf

Introduction: Why Care?
● Selling an embedded device typically involves distribution

of open source software

● This carries the risk of legal action if not done properly

● Doing this right gives you standing in the community

● Need to keep sources anyway so you can rebuild old
releases with minor changes
○ For debugging
○ To satisfy customer requests

● Sources often disappear from the internet

Introduction: Yocto Project
● Create a fully customised Embedded Linux distribution

● Widely adopted, industry standard, welcoming community

● Includes OpenEmbedded build system and other tools

● Several features included to support license compliance

● https://www.yoctoproject.org/

https://www.yoctoproject.org/

Recipes & Metadata
A recipe contains metadata & build commands for a piece of software

Example: hello_2.10.bb

SUMMARY = "GNU Hello"

LICENSE = "GPL-3.0-only"

LIC_FILES_CHKSUM = "file://COPYING;md5=d32239bcb673463ab874e80d47fae504"

SRC_URI = "https://ftp.gnu.org/gnu/hello/hello-${PV}.tar.gz"

SRC_URI[sha256sum] = "31e066137a962676e89f69d1b65382de95a7ef7d914b8cb956f41ea72e0f516b"

inherit gettext autotools

Providing Sources
● Copyleft licenses typically require you to provide source code

(including any modifications) along with compiled binaries.

● Yocto Project supports this with the archiver class

● Set INHERIT += "archiver" and choose the mode:
○ ARCHIVER_MODE = "original"
○ ARCHIVER_MODE = "patched"
○ ARCHIVER_MODE = "configured"
○ ARCHIVER_MODE = "mirror"

● The archiver can be configured further

Providing License Text
● Many licenses require you to provide the license text and

copyright notice(s) along with compiled binaries.

● Copy ${DEPLOY_DIR}/licenses after building an image
○ May need some pre- & post-processing

● Include license text in images
○ Set COPY_LIC_MANIFEST = "1" & COPY_LIC_DIRS = "1"
○ Places files into /usr/share/common-licenses

● Create license packages
○ Set LICENSE_CREATE_PACKAGE = "1"
○ Places license text in /usr/share/licenses
○ Provides an upgrade path for license text

Excluding Unwanted Licenses
● The INCOMPATIBLE_LICENSE variable allows recipes to be

excluded by license
○ Prevents accidental inclusion of unwanted code

● Applies to target packages only

● meta-gplv2 layer may be needed if excluding GPL 3.0 or later

● Values in LICENSE and INCOMPATIBLE_LICENSE should be
standardised on the SPDX License List to avoid confusion
○ See https://spdx.org/licenses/

https://spdx.org/licenses/

License Flags
● Another method of excluding recipes by license class

● May be used to highlight non-copyright issues
○ Patented algorithms
○ Commercial license / EULA

● Flagged recipes are excluded by default
○ Set LICENSE_FLAGS_WHITELIST to enable them

SDK Concerns
● Yocto Project supports generation of an SDK / Extensible SDK

(ESDK)
○ Allows app developers to build code outside Yocto Project

● The archiver should capture sources for SDK components
○ This is not guaranteed for the Extensible SDK

● Building with the SDK bypasses Yocto Project license compliance
tooling
○ Be careful distributing third-party code built this way

Issues with Language Package Managers
● Many newer languages use their own package managers

○ Go, NPM (nodejs), Cargo (Rust)

● These present issues for Embedded development and license
compliance
○ These just don’t seem to be first class concerns

● Features we need from these package managers
○ Offline build support
○ Download source archive

■ Including license text & other collateral
○ HTTP/HTTPS proxy support
○ Source mirror support

Case Study: Rust (1)
● Cargo is a build system and a language package manager for Rust

● Projects usually contain a Cargo.toml file
○ Description, authors, license and other metadata
○ Dependencies
○ Configuration

● Open Source Rust projects are typically published to crates.io
○ Provides search and download functionality

● See https://www.rust-lang.org/ and https://crates.io/

https://www.rust-lang.org/
https://crates.io/

Case Study: Rust (2)
● Rust is supported in Yocto Project by the meta-rust layer

○ See https://github.com/meta-rust/meta-rust

● Recipes can be automatically generated by the cargo-bitbake tool
○ Includes SRC_URI entries for dependencies
○ A fetcher is provided to handle “crate://” URLs
○ See https://github.com/meta-rust/cargo-bitbake

● The cargo bbclass is used for building Rust projects
○ Performs offline builds using fetched crates

● Integrates well with most Yocto tooling
○ Archiver, HTTP proxies, source mirrors all work
○ However, license text is not collected for dependency crates

https://github.com/meta-rust/meta-rust
https://github.com/meta-rust/cargo-bitbake

Generating SPDX Documents
● SPDX (https://spdx.dev/) is “An open standard for communicating

software bill of material information, including components,
licenses, copyrights, and security references.”

● SPDX is supported in Yocto Project by the meta-spdxscanner layer
○ Provides tools to scan source code for licenses and work with SPDX

documents
○ These processes are typically slow

■ May extend build times by several hours
■ Usable on release builds, may be intolerable on day-to-day dev builds

○ See http://git.yoctoproject.org/cgit/cgit.cgi/meta-spdxscanner/

● Supports scancode-toolkit for SPDX document generation
○ Set INHERIT += "scancode-tk" in local.conf
○ Or use inherit scancode-tk in desired recipes
○ See https://scancode-toolkit.readthedocs.io/en/latest/

https://spdx.dev/
http://git.yoctoproject.org/cgit/cgit.cgi/meta-spdxscanner/
https://scancode-toolkit.readthedocs.io/en/latest/

Integrating with Fossology
● Fossology is a more fully featured system for compliance scanning

and signoff
○ Runs as a service with a web interface and an API

● Integration is also provided by the meta-spdxscanner layer
○ fossology-python or fossology-rest bbclasses may be used
○ Upload source code to a Fossology instance

● Scanning, review and document generation is done asynchronously
through the Fossology interface
○ SPDX documents are not generated directly as part of the Yocto Project

build

● See https://www.fossology.org/

https://www.fossology.org/

Future Work
● Better integration with language package managers

○ May require changes to NPM, Cargo, etc

● Automatic generation of a plain text or HTML license document for
an image

● Integration with other license compliance tooling
○ OSS Review Toolkit (https://github.com/oss-review-toolkit/ort)

● License scanning & SPDX document generation for Yocto Project
releases
○ Provide a feedback loop to confirm license metadata in recipes is

correct
○ Non-trivial!

https://github.com/oss-review-toolkit/ort

Thank you
Accelerating deployment in the Arm Ecosystem

